Simulation based infernce for Stochastic GW background Analysis (Alvey+, 2023)
NZ Gravity Journal Club
Oct 26th, 2023
Analyze all the data, simultaneously, block-by-block
$<10^5$ parameters in the full problem
Noise model | Signal model | Noise + Signal |
---|---|---|
Karnesis+ ‘19 | Baghi+ ‘23 | Boileau+ ‘20 |
Caprini+ ‘19 | Muratore+ ‘23 | Olaf+ ‘23 |
Pieroni+ ‘20 | Aimen+ (WIP) |
High precision reconstruction required to extract an SGWB signal
$$ p(\theta|d) = \frac{\mathcal{L}(d|\theta)\pi(\theta)}{\color{red}{Z(d)}}= \frac{\mathcal{L}(d|\theta)\pi(\theta)}{\color{red}{\int_{\theta}\mathcal{L}(d|\theta)\pi(\theta) d\theta}} $$
What if we dont have $\mathcal{L}(d|\theta)$ ?
New term for:
Compare the ‘simulated’ data to the ’true’ data
MCMC | VI | SBI | |
---|---|---|---|
Explicit Likelihood | ✅ | ✅ | ❌ |
Requires gradients | ✅ | (✅) | ❌ |
Targeted inference | ✅ | ✅ | ❌ |
Amortized | ❌ | (✅) | ✅ |
Specialised architechture | ❌ | ✅ | ✅ |
Requires data summaries | ❌ | ❌ | ✅ |
Marginal inference | ❌ | ❌ | ✅ |
Skipping this, can come back if folks interested
$$D_{\rm KL}(\tilde{p}, p) = \int \tilde{p}(x) \log \frac{\tilde{p}(x)}{p(x)}\ dx$$
$D_{KL}$ is not symmetric
PROBLEM: how do we avoid evaluating the $p(\theta|d)$?
$$D_{\rm KL} [\tilde{p}, p] (\theta) \sim \mathbb{E}_{\theta\sim\tilde{p}(\theta|d)} \log \left[ \frac{\tilde{p}(\theta|d)}{\mathcal{L}(d|\theta)\pi(\theta)} \right] + C$$
$$D_{\rm KL}[p, \tilde{p}] (\theta, d) \sim -\mathbb{E}_{(\theta,d)\sim p(\theta,d)} \log \tilde{p}(\theta| d) + C $$
Variatinal inference
SBI Marginal inference
$${\color{red}p(\theta_{\rm Waldo}| \rm{image})} =$$ $$\int {\color{blue}p(\theta_{A}, \theta_{B} … \theta_{\rm Waldo}| \rm{image})}\ d\theta_A\ d\theta_B\ d\theta_{\rm Waldo} $$
Noise model (only amplitudes parameterised – shape fixed):
Two signal models (one chosen):
Mc = U(8e5, 9e5)
eta = U(0.16, 0.25)
chi1 = U(-1.0, 1.0)
chi2 = U(-1.0, 1.0)
dist_mpc = U(5e4, 1e5)
tc = 0.0
phic = 0.0
“Several numerical settings should be chosen for the general structure of the algorithm as well as the network architechture”